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Abstract— A soil moisture (SM) retrieval algorithm, rooted in electromagnetic theory, is
proposed and validated against synthetic data with good retrieval accuracy. The proposed Sliced
Regression (SR) algorithm generates piece-wise linear fits to a data set obtained from a forward
model, and then retrieves the soil moisture by applying a linear least-squares approach. This
algorithm is compared against a widely employed semi-empirical inversion algorithm (SMART),
and it is observed that better results are returned from the former. Performance of the proposed
retrieval algorithm on single band and dual band (L and S-bands) retrieval is studied; and it is
found dual band retrieval returns better retrieval results for SM, along with other soil surface
parameters.
The proposed algorithm is employed on synthetically generated data-sets (generated using the
Integral Equation Method as the forward model for ground scattering) for SM retrieval scenario
considering all the primary influencers on backscatter into the model. To measure SM for vege-
tated terrain, vegetation is modelled as a collection of randomly oriented dielectric cylinders with
radii and length specific to the vegetation. The overall backscatter is calculated as the sum of
individual contributions from the ground, vegetation and their interactions. Having parameter-
ized the vegetation forward model as above, we extend the SR to retrieve SM in the presence of
vegetation.

1. INTRODUCTION

Soil moisture (SM) is an important parameter in various environmental studies, such as in building
climate models in meteorology, crop yield forecasting and irrigation scheduling in agriculture and to
predict early warnings of drought/ flooding in disaster management to name a few [1, 2]. Therefore
there is a need to measure SM on a large scale, cost-effective and routine basis through microwave
remote sensing via synthetic aperture radar (SAR). SM, here, refers to water content in the surface
soil corresponding to few centimeters [3].

Over the past few decades, several studies have proposed various algorithms for SM retrieval
from SAR data. These can be broadly classified into three groups namely: theoretical models,
semi-empirical models, and empirical models [3]. Empirical models are based on specific datasets
and implementation conditions (such as the sensor parameters) and suffer from severe drawbacks
such as site-specific applicability. Semi-empirical models are built on experimental or simulated
datasets, but are guided by trends based on theoretical models. They serve to be simplistic in
comparison with theoretical models and site independent as opposed to empirical models. Some
such models include [4, 5, 8]. Theoretical models built on a strong physical basis generally result
in the most accurate SM retrieval but suffer from being complex and computationally intensive
models, particularly for inversion.

Another challenge for SM retrieval lies in the formulation of the forward model. For in-
stance, soil naturally has a heterogeneous vertical profile. However the original IEM developed
by Fung et al. [7, 10] assumes soil to be a homogeneous dielectric without any variation in permit-
tivity with depth. In this paper, to retrieve depth dependent moisture, we use the extended IEM
model to incorporate a vertical soil moisture profile [11].

It is often necessary to retrieve SM from surfaces covered by vegetation — not just bare soil.
Thus, it is essential to formulate the forward model to take into account the scattering by vegetation.
One of the two main approaches for modeling vegetation is the Canopy Cloud Model [14] which
models vegetation as a water cloud with droplets held in place by vegetative matter. It then proceeds
to model the ‘canopy’ as a homogeneous dielectric slab and considers volume scattering to be the
predominant phenomenon. However, we pursue the second approach [12], in which vegetation is
modelled as a collection of lossy dielectric scatterers, while considering the contribution of scattering
from multiple paths through the vegetation to the final backscatter direction.
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2. THEORY

This section illustrates the dependence of the radar backscatter on various physical factors related
to the soil and vegetation.

2.1. Bare Soil with Homogeneous Soil Profile
Radar backscatter coefficient (σ) from a random rough surface primarily depends on the surface
geometrical properties, quantified by (i) RMS surface height (h), (ii) correlation length (l), and
(iii) on the surface electrical properties as quantified by the complex dielectric constant (ε) of the
soil substrate. Here, we use the improved integral equation model (I2EM) which is an algorithm
that computes the backscattering coefficient of a rough surface for a given operating wavelength
λ having any combination of receive and transmit wave polarizations [6]. We use the Hallikainen
dielectric model [9] to calculate complex permittivity from soil moisture.

2.2. Effects of Depth Dependent Moisture
The Improved Integral Equation Model (I2EM) assumes the soil profile to be homogeneous, i.e.,
moisture is constant with respect to depth. Instead, we model the soil profile as a piece-wise
constant, multilayer dielectric surface in which the field encounters multiple reflections as shown
in Fig. 1 due to varying soil permittivity. For this purpose, we assume an exponentially varying
dielectric profile [11] for the soil, whose expression is given by

εr(z) = 1 +
2(εr0 − 1)
1 + e−mz

, z ≥ 0 (1)

where m is the transition rate factor and εr0 is the dielectric constant of the topmost layer. To
account for the depth dependence, we update the reflectivities in the I2EM with the effective
Fresnel reflection coefficients of scattering from the heterogeneous soil profile.

Figure 1. Multiple radar reflections from dielectric layers.

2.3. Effects of Vegetation Canopy
In most practical scenarios, there is a need to carry out soil moisture retrieval over vegetated terrain.
In this paper, we model the vegetation as a layer consisting of a collection of randomly oriented
dielectric cylinders. The spatial distribution of these cylinders are dictated by a suitable probability
density function such that it mimics the true geometrical orientation of the vegetation [12, 13]. The
dielectric constant of these cylinders accounts for contributions from free water, bound water and
non-dispersive residues [15] :

εv = εr + vfw εf + vb εb (2)

where εv is the vegetation dielectric constant, εr is the non-dispersive residual part of the dielectric
constant, εf and εb are the dielectric constants of free water and bound water respectively while
vfw and vb are the volume fraction of free water and vegetation bound water respectively.

Vegetation modelling varies greatly depending on the type of vegetation in question. Forests, for
instance, are modelled as three or more layers of ‘primary’ and ‘secondary’ scatterers which include
disks, needles and cylinders. Here, we are concerned with the modelling of agricultural crops
and hence, as a reasonable first-order approximation, we model the vegetation as a single layer of
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Figure 2. Scattering paths.

randomly oriented cylinders whose spatial distribution is cosine squared about the vertical [13]. In
our approach, we ignore multiple scatterings apart from the case of double reflection. With this
assumption, we can categorize any scattering into four different paths [16].

1. Scattering from the Vegetation Layer (Path 1)
2. Backscatter from the Ground Surface (Path 4)
3. Double Reflection Scattering (Paths 2 and 3)

For the case of Double Reflection Scattering, we model the scattering at the cylinder to be
bistatic and the scattering at the ground to be specular. For backscatter from the ground surface
— we incorporate the aforementioned I2EM with depth dependence along with an attenuation
term as specified in Eq. (3). Summing up the individual contributions from the four paths, the
total backscatter coefficient is given by

σtotal = σveg(vwc, a, b, ρs) + τ2σIEM (h, l, ε) + σdb(vwc, a, b, ρs, h, l, ε) (3)

where τ2 is an attenuation coefficient which is a function of vegetation characteristics, vwc is the
vegetation water content, b is the cylinder height, a is the cylinder radius and ρs is the density of
scatterers.

3. METHODOLOGY

Forward Model
Generating

the Data Cube

Slicing the Data

Cube into Bins

Piecewise Linear

Regression
Finding the

Correct Bin
Retrieving Soil Moisture

Figure 3. The flow of sub-tasks to retrieve SM through the sliced inversion regression algorithm.

The radar backscatter coefficient, σ, is a non-linear function of soil and vegetation parameters.
This makes inversion for soil moisture (a function of ε) both a challenging and computationally
intensive task. In this section, we describe our SM retrieval algorithm — the Sliced Regression
Inversion technique. The proposed algorithm broadly consists of two parts — the forward and the
inverse problem. The overall methodology of our algorithm is shown graphically in Fig. 3, and the
individual steps of the algorithm are described below.

3.1. Generating Data Cube
The forward model is employed to synthetically generate the radar backscatter (σ) values for all
combinations of physically plausible values of surface parameters (h, l, ε) and vegetation parameters
(vwc, a, b, ρs). Such a construct of a dataset is referred to as a ‘datacube’. For our algorithm, we
generate six such datacubes corresponding to the three polarizations (σhh, σhv and σvv) for each
of the two frequency bands (L & S-band). Notation-wise, in the case of σpq,f , p, q refer to the
transmitted and received signal polarization respectively (either H or V for horizontal and vertical
polarization, respectively) at frequency band f .
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3.2. Creating Bins
The next step is to partition the entire data cube into smaller bins. Due to the function nonlinearity,
it was found that the model works best by partitioning the data cube into the smallest possible
grids (or bins), though this has a higher computational price. Thus we partition the data cube by
taking the adjacent data points as the end points of bin. Therefore, for an N -dimensional datacube,
each bin will have 2N points. It is important to note that this is a one time effort and need not be
repeated for multiple inversions.
3.3. Linear Regression
Once the datacube is partitioned into bins, we perform linear regression in each bin to obtain an N
dimensional hyperplane between input and output parameters. Through this, we obtain, for each
bin, the set of regression coefficients β0, β1, . . . , βN from the radar backscatter values σpq,f for that
bin. We present the retrieval for a single crop type assuming the cylinder length, radius and density
of scatterers to be constant. The linear relation between backscatter σ and input parameters can
thus be given as:

σ = β0 + β1 h + β2 l + β3 mv + β4 m + β5 vwc (4)
The corresponding matrix equation is as follows:



σhh,l
1 σvv,l

1 σhh,s
1 σvv,s

1 σhv,l
1 σhv,s

1

σhh,l
2 σvv,l

2 σhh,s
2 σvv,s

2 σhv,l
2 σhv,s

2
...

...
...

...
...

...
σhh,l

n σvv,l
n σhh,s

n σvv,s
n σhv,l

n σhv,s
n




︸ ︷︷ ︸
Y

=




1 h1 l1 mv1 m1 vwc1

1 h2 l2 mv2 m2 vwc2
...

...
...

...
...

...
1 hn ln mvn mn vwcn




︸ ︷︷ ︸
X




βhh,l
0 βvv,l

0 · · · βhv,s
0

βhh,l
1 βvv,l

1 · · · βhv,s
1

...
...

. . .
...

βhh,l
5 · · · · · · βhv,s

5




︸ ︷︷ ︸
β

(5)

The regression coefficients, β, can be found by solving the equation β = X+Y where X+ is the
pseudoinverse of X. Fig. 4 shows a 2-dimensional datacube to illustrate the idea of hyperplanes.

Figure 4. Partitioning the data cube into bins — the vertical axis represents the backscatter, while the hori-
zontal axis represent the independent physical parameters. The left hand figure shows the actual backscatter
function, with red dots indicating the discrete data points used to generate the data cube. The right figure
shows the hyperplanes generated by performing linear regression on each sliced bin.

3.4. Inversion
After computing the regression coefficients, β, we estimate the value of soil and vegetation param-
eters, i.e., x, using the radar backscatter (σ) obtained from SAR data. The parameters (x) can be
found by minimizing the cost function subject to the following constraints for each bin:

minimize
x

||βx− y||22 + γ ‖xm‖2
2

subject to lb ≤ x ≤ ub for each bin
(6)
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where lb, ub are the lower and upper bounds of each bin, γ is a regularization factor set empirically,
and y is defined as:




σhh,l − βhh,l
0

σvv,l − βvv,l
0

σhh,s − βhh,s
0

σvv,s − βvv,l
0

σhv,l − βhv,l
0

σhv,s − βhv,s
0




︸ ︷︷ ︸
y

=



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5
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5
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2 βvv,s
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5
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5

βhv,s
1 βhv,s

2 βhv,s
3 βhv,s

4 βhv,s
5



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β




h
l

mv
m

vwc




︸ ︷︷ ︸
x

(7)

and the regularization term xm = [0 0 0 m 0]T forces the transition rate factor (m) to have small
value. For a given data point, we choose the bin which has the minimum error (as defined by
Eq. (6)) and this bin is used for retrieval.

4. RESULTS

In order to test the accuracy of the model, the root mean squared error (RMSE), relative percentage
error, standard deviation (SD) and the correlation coefficient values (R) are used. The correlation
coefficient is a measure of the correlation relationship between the measurements and observations.

R =
Cov(a, b)√
Var|a|Var|b| (8)

RMSE =

√√√√ 1
N

N∑

i=1

(ai − bi)2 (9)

% error =

√√√√ 1
N

N∑

i=1

(
ai − bi

ai

)2

× 100 (10)

where ai is the true value and bi is the estimated value of the parameter and N is the number
of data points. The standard deviation is calculated by taking the square root of variance, i.e.,
SD =

√
Var|a|.

4.1. Comparison with SMART Inversion Algorithm
We compare the retrieval results from SMART [8], a semi empirical soil inversion algorithm, with
the proposed Sliced Regression Inversion algorithm. Both the inversion algorithms were run on
the datacube obtained from the SMART Forward model. The comparison of retrieval results from
both the methods (with an added noise of 0.6 dB) is tabulated below. From the results tabulated
below, it is evident that the Sliced Regression Inversion algorithm gives more accurate results than
the SMART algorithm for the retrieval of soil moisture (mv) as well as RMS height (h).

Table 1. Comparison between SMART and proposed SR algorithm for SM retrieval.

Algorithm
h (cm) mv (cm3/cm3)

RMSE SD RMSE SD
SR Inversion 0.20 0.04 0.053 0.012

SMART Inversion 0.25 0.07 0.073 0.019

4.2. Single-band vs Dual-band Retrieval Results
It is expected that operating SAR at two different frequencies will provide more information about
the location being monitored as compared to a single frequency. To investigate the improvement in
the retrieval accuracy for dual band operation, we conduct the following study. As in the previous
section, the SMART Forward model is employed to populate the datacube in case of single-band
(L) and dual-band (L & S). From the results, we infer that dual band retrieval is more accurate in
case of all retrieval parameters.
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Figure 5. Comparison between SMART and proposed SR algorithm.

Table 2. Single and dual band comparison results for added noise of 0.6 dB.

Frequency
h (cm) ε mv (cm3/cm3)

RMSE SD RMSE SD RMSE SD
Single band 0.19 0.05 3.28 0.88 0.053 0.015
Dual band 0.14 0.03 2.21 0.49 0.037 0.010

4.3. Bare Soil with Depth Dependent Moisture
For the case in which soil is assumed to have heterogeneous profile, i.e., depth dependent moisture,
the retrieval is done using synthetically generated test data from the forward model. In case of bare
soil, the cross polarization component of backscatter is not significant, thus we only use the co-
polarization components of L and S band (i.e., σhh and σvv) for retrieval. The following ranges were
selected for each of the parameters for generating the datacube: h = [0.3, 0.7, 1.5], l = [4, 18, 34],
εr = [3, 7, 12, 19], εi = [0, 0.5, 1, 1.5], m = [0, 4, 8, 12]. We present the retrieval results for this case in
the table below using the relative percentage error as the error metric. We also provide the results
with retrieval done on a validation set with the errors summarized as below. For a general case of
random test data with 0.5 dB added noise, we get a relative percentage error of 11.57 % in the soil
dielectric constant ε.

Table 3. Retrieval results (% error) for depth dependent moisture with (a) Validation & (b) Random test
data.

Noise level ε h l
0 dB 5.39 3.79 6.21

0.5 dB 6.76 9.43 22.88

Noise level ε h l
0 dB 11.43 4.7 11.53

0.5 dB 11.57 9.6 23.7

4.4. Vegetation Inversion Results
After including the effects of vegetation into our model, we apply our algorithm to retrieve soil
moisture from vegetated terrain. We solve the optimization problem specified by Eq. (7) for the
parameters as specified below.

It is generally observed that the correlation length is hard to determine experimentally and
its measurement is highly susceptible to errors. Hence we present the results for both fixed and
variable correlation length. The algorithm is tested on a synthetically generated test data with
added Gaussian noise of zero mean and 0.5 dB variance. The retrieval results are presented in the
Table 5. From the table it is clear that both the soil and vegetation moisture is retrieved with
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Figure 6. Soil profile with retrieved permittiviy (εtop = 8) and transition rate factor (m = 7).

Table 4. (a) Fixed parameter values & (b) Parameter ranges for data cube generation.

Parameter Value
Cylinder radius (a) 2 mm
Cylinder length (lc) 50 cm
Cylinder density (ρ) 900 cylinders/m3

Vegetation layer height (b) 50 cm
Orientation PDF p(θc, φc) cos2 θc cos2 φc

Parameter Range
RMS surface height (h) 0.3–1.7
Correlation length (l) 5–27
Soil moisture (mv) 0.05–0.4
Transition rate (m) −6–6

Vegetation Water Content (vwc) 0.15–0.4

good accuracy (< 10% error). Moreover there is a strong correlation between the retrieved and
actual value of soil and vegetation moisture (R > 0.96). Figure 7 shows the comparison between
the retrieved and the actual soil moisture. A reference line is included for the ease of comparison
between the retrieved and actual soil moisture.

Table 5. Retrieval results for soil and vegetation moisture.

Correlation
Length

Noise
Level

mv vwc

RMSE Corr (R) RMSE Corr (R)
Fixed (16 cm) 0 dB 0.024 0.980 0.001 0.990

Variable 0.5 dB 0.046 0.928 0.008 0.994

Table 6. Time taken for data cube generation and inversion algorithm.

Code Number of points Time taken (min.)
Data Cube Generation 1152 564

S-R Inversion 144 1.4

The simulations were run on an Intel Octa-Core i7 processor at 3.60GHz with a RAM of 15.5 GB
and the run time was noted as shown in the Table 6.
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Figure 7. Comparison between retrieved and actual soil moisture.

5. CONCLUSION

In this paper, we presented an algorithm for retrieving soil moisture using a physics based forward
model (I2EM) to generate backscatter. We extended the previous I2EM model to incorporate
depth dependency of moisture and included the effect of vegetation by modelling it as dielectric
scatterers. The retrieval of soil and vegetation moisture was done using both single and dual bands;
it was found that dual band retrievals yielded better results on expected lines. The results were
found to be better than an existing inversion algorithm (SMART). The retrieval algorithm works
with a good accuracy with RMSE being 0.046 for soil moisture and 0.008 for vegetation water
content in case of vegetation. In future work, we will investigate the dependence of backscatter
sensitivity to the soil and vegetation parameters and refine our retrieval algorithm accordingly
methods to reduce the retrieval error further.
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