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Introduction

Introduction

Manifold based models more efficient than conventional low-rank
approaches

Proposed a joint manifold learning and sparsity-aware framework for
dynamic MRI

Method establishes link between recently developed manifold models
and conventional sparsity-aware models
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Introduction

Background

Dynamic image series represented by an N × Nfr Casorati Matrix:

X = [x1, x2, · · · , xNfr
]

where N is the size of each image (Np × Nf ) and xi is the i th image.

Data acquistion in dynamic MRI

Y = φ(X) + V

where φ is the Fourier undersampling operator and V stands for noise.

Recovering image series from undersampled k-space data

arg min
X
||Y − φ(X)||2F + λR(X)

where R(·) is the Fourier sparsity-aware loss along temporal diretion.
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Algorithm

Algorithm

Assumptions: High dimensional images xi ∈ CN live on or close to a
smooth manifold M of dimension M � N.

Steps:

1 Learn a smooth manifold by describing neighborhood of each image
based on affine combination.

2 Establish a mechanism to capture the periodicity and enforce sparse
representation of dynamic image series in the manifold.

3 Reconstruct the dynamic image series using regularized inverse
problem framework.
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Proposed Framework

Manifold Learning and Embedding

Figure: 3D data points lying close to the 2D smooth manifold surface.

Assume there exists a smooth M-dimensional (M � N) manifold
M∈ CN such that an image xi ∈ CN lie on or close to M.

Neighborhoods of each signal (image) defines the manifold geometry.

Neighborhoods defined in terms of properties of the tangent spaces of
a smooth manifold.
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Proposed Framework

Manifold Learning and Embedding

Image xi approximated by the affine combination of its neighbors:

xi =

Nfr∑
n=1

ωn
i xn

The sparse weight vector ωi computed by solving:

ωi = arg min
ωH
i 1Nfr=1,ωi

i=0

||xi −
Nfr∑
n=1

ωn
i xn||2 + β||ωi ||1

Constraint ωH
i 1Nfr

= 1 ensures affine neighboring relations.

Constraint ωi
i = 0 excludes xi from being a neighbor of itself.

β ≥ 0 controls the number of neighbors.

Result: The Manifold geometry of dynamic image series is described by
an Nfr × Nfr weight matrix W whose entries are ωn

i .
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Proposed Framework

Objective of Manifold Learning

Find an M dimensional basis Ψ that preserves the manifold geometry

arg min
Ψ∈CM×Nfr ,

ΨΨH=IM ,Ψ1M=0M

Nfr∑
i=1

||ψi −
Nfr∑
n=1

ωn
i ψn||2

where Ψ = [ψ1 ψ2 · · · ψNfr
].

Constraint: 1) ΨΨH = IM excludes all-zero solution and 2)
Ψ1M = 0M centers the columns of Ψ around 0.

Solution: The desired Ψ is given by the eigen-decomposition of the
matrix κ := (I −W)(I −W)H such that rows ψm (m = 1, 2, · · · ,M)
of Ψ are the eigenvectors κ that correspond to the M least significant
eigenvalues.
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Proposed Framework

Dynamic MRI: Reconstruction from undersampled k-space
data

Use Ψ as the temporal basis of dynamic image series

Represent image series Casorati Matrix as X = UΨ

Regularized solution is given by

arg min
U
||Y − φ(UΨ)||2F + λR(UΨ)

Sparsity Enforcing regularizer is given by:

R(UΨ) = ||UΨf ||

where Ψf = F(Ψ) and F is the Fourier transform operator (suitable
for sparse representation) along temporal direction.
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Proposed Framework

Image Reconstruction

Introducing an auxiliary variable: Z = UΨf

arg min
U,Z

||Y− φ(UΨ)||2F +
λ

2δ
||UΨf − Z||2F + λ||ρ(Z)||1

where ρ(·) : CP×Q → CD×1,D = P × Q is a vectorizing operator.

Iteratively alternating over U and Z until convergence

Z(t) = arg min
Z

1

2δ
||U(t−1)Ψf − Z||2F + ||ρ(Z)||2F

U(t) = arg min
U
||Y− φ(UΨ)||2F +

λ

2δ
||UΨf − Zt ||2F

Once an optimal U∗ is obtained at convergence, desired dynamic image
series can be computed as X = U∗Ψ.
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