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Introduction

Introduction

@ Manifold based models more efficient than conventional low-rank
approaches

@ Proposed a joint manifold learning and sparsity-aware framework for
dynamic MRI

@ Method establishes link between recently developed manifold models
and conventional sparsity-aware models
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Background

Dynamic image series represented by an N x Ng Casorati Matrix:

X = [X17x27 e 7for]

where N is the size of each image (N, x N¢) and x; is the i*h image.
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Background

Dynamic image series represented by an N x Ng Casorati Matrix:
X= [X17x27"' 7for] J

where N is the size of each image (N, x N¢) and x; is the i*h image.

Data acquistion in dynamic MRI
Y=9¢(X)+V J

where ¢ is the Fourier undersampling operator and V stands for noise.

Recovering image series from undersampled k-space data

arg min|[¥ — 0(X)|[} + AR(X)

where R(+) is the Fourier sparsity-aware loss along temporal diretion.
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Algorithm

Assumptions: High dimensional images x; € C" live on or close to a
smooth manifold M of dimension M < N.
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Algorithm

Assumptions: High dimensional images x; € C" live on or close to a
smooth manifold M of dimension M < N.
Steps:
© Learn a smooth manifold by describing neighborhood of each image
based on affine combination.
@ Establish a mechanism to capture the periodicity and enforce sparse
representation of dynamic image series in the manifold.

© Reconstruct the dynamic image series using regularized inverse
problem framework.
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Manifold Learning and Embedding

2 D smooth manifold
= Data Points

b == IZ" 3 D ambient space
Neighborhood

Figure: 3D data points lying close to the 2D smooth manifold surface.

@ Assume there exists a smooth M-dimensional (M < N) manifold
M € CN such that an image x; € C" lie on or close to M.
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Manifold Learning and Embedding

2 D smooth manifold
— = Data Points

-
- Ta " IZ" 3 D ambient space
Neighborhood

Figure: 3D data points lying close to the 2D smooth manifold surface.
@ Assume there exists a smooth M-dimensional (M < N) manifold
M € CN such that an image x; € C" lie on or close to M.
@ Neighborhoods of each signal (image) defines the manifold geometry.

@ Neighborhoods defined in terms of properties of the tangent spaces of
a smooth manifold.
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Manifold Learning and Embedding

Image x; approximated by the affine combination of its neighbors:
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Manifold Learning and Embedding

Image x; approximated by the affine combination of its neighbors:

The sparse weight vector w; computed by solving:

Nfr
wi=argmin ||xi — > wx|[* + Bllwillx
w{"lerzl,wl"zo n=1
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Manifold Learning and Embedding

Image x; approximated by the affine combination of its neighbors:

The sparse weight vector w; computed by solving:

Nfr
wi=argmin ||xi — > wx|[* + Bllwillx
w{"lerzl,wl"zo n=1

o Constraint w,’-‘"lNﬁ =1 ensures affine neighboring relations.
o Constraint w,’: = 0 excludes x; from being a neighbor of itself.
@ [ > 0 controls the number of neighbors.
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Manifold Learning and Embedding

Image x; approximated by the affine combination of its neighbors:

The sparse weight vector w; computed by solving:

Nfr
wi=argmin ||xi — > wx|[* + Bllwillx
w{“’lNﬁzl,wl’:O n=1

o Constraint w,’-‘"lNﬁ =1 ensures affine neighboring relations.
o Constraint w,’: = 0 excludes x; from being a neighbor of itself.
@ [ > 0 controls the number of neighbors.

Result: The Manifold geometry of dynamic image series is described by
an Ng x Ng weight matrix W whose entries are w;'.
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Objective of Manifold Learning

Find an M dimensional basis W that preserves the manifold geometry

Nfr Nfr
agmin S (g = 3wl
wech N, iy n—=1

=1y, U1,,=0y

where ¥ = [¢)1 ¢ -+ Yp, ]
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Objective of Manifold Learning

Find an M dimensional basis W that preserves the manifold geometry

Nfr Nfr
agmin S (g = 3wl
wech N, iy n=1

TOH=1y,, T1y=0y

where ¥ = [¢)1 ¢ -+ Yp, ]

e Constraint: 1) ¥W" = 1), excludes all-zero solution and 2)
W1y = 0y centers the columns of ¥ around 0.

@ Solution: The desired W is given by the eigen-decomposition of the
matrix s := (I — W)(/ — W) such that rows ™ (m=1,2,--- , M)
of W are the eigenvectors « that correspond to the M least significant

eigenvalues.
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Proposed Framework

Dynamic MRI: Reconstruction from undersampled k-space
data

@ Use W as the temporal basis of dynamic image series

@ Represent image series Casorati Matrix as X = UW¥
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Proposed Framework

Dynamic MRI: Reconstruction from undersampled k-space
data

Use W as the temporal basis of dynamic image series

Represent image series Casorati Matrix as X = UW

Regularized solution is given by

arg min|[Y — ¢(U®)||2 + AR(UW)
U

Sparsity Enforcing regularizer is given by:
RUY) = [|U¥¢|]

where W¢ = F(¥) and F is the Fourier transform operator (suitable
for sparse representation) along temporal direction.
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Proposed Framework

Image Reconstruction

Introducing an auxiliary variable: Z = UW¥¢

. A
ar%meHY — ¢(UD)||E + 55 IU¥r — Z||E + Allp(2)112

where p() : CP*Q — ¢cP*1 D = P x Q is a vectorizing operator.
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Proposed Framework

Image Reconstruction

Introducing an auxiliary variable: Z = UW¥¢

. A
ar%r;'nHY — ¢(UD)||E + 55 IU¥r — Z||E + Allp(2)112

where p() : CP*Q — ¢cP*1 D = P x Q is a vectorizing operator.

Iteratively alternating over U and Z until convergence

o1 _
20) = arg in UV~ 2| + (D))}

U® = arg mmHY S(UD)|| +55 HU‘I’f Al

Once an optimal U* is obtained at convergence, desired dynamic image
series can be computed as X = U*W.
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