Time and Accuracy Considerations of Uncompressed vs Compressed QR Based Least Squares Solution

Avrajit Ghosh, Siddhant Gautam

Computational Mathematics, Science and Engineering,
Michigan State University

December 9, 2020

Table of Contents

- Introduction
- 2 Least Squares Solution
- Fast RFD Johnson-Lindenstrauss Map
- 4 Experiments
- Discussion
- 6 Conclusion

Introduction

- QR factorization of matrix A to get faster inversion
- Finding least squares solution (pseudo-inverse) to overdetermined system of equations
- Compress a matrix $A \in \mathbb{C}^{N \times n}$ using fast JL map to get $Ac \in \mathbb{C}^{m \times n}$ with m < N and $n \ll N$.
- Find the best values of m and n for a given N for a good error-time trade-off

Introduction

- QR factorization of matrix A to get faster inversion
- Finding least squares solution (pseudo-inverse) to overdetermined system of equations
- Compress a matrix $A \in \mathbb{C}^{N \times n}$ using fast JL map to get $Ac \in \mathbb{C}^{m \times n}$ with m < N and $n \ll N$.
- Find the best values of m and n for a given N for a good error-time trade-off

$$\begin{pmatrix} f_{11} & \cdots & f_{1N} \\ f_{21} & \cdots & f_{2N} \\ \vdots & \ddots & \vdots \\ f_{m1} & \cdots & f_{mN} \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{Nn} \end{pmatrix} = \begin{pmatrix} ac_{11} & \cdots & ac_{1n} \\ ac_{11} & \cdots & ac_{1n} \\ \vdots & \ddots & \vdots \\ ac_{m1} & \cdots & ac_{mn} \end{pmatrix}$$

$$Ac_{m \times n}$$

Gram-Schimdt Orthogonalization

Consider a matrix A

$$\mathbf{A}=[\mathbf{a}_1|\mathbf{a}_2|\cdots|\mathbf{a}_n]$$

Then,

$$\begin{aligned} \mathbf{u}_1 &= \mathbf{a}_1, \ \mathbf{e}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} \\ \mathbf{u}_2 &= \mathbf{a}_2 - (\mathbf{a}_2 \cdot \mathbf{e}_1)\mathbf{e}_1, \ \mathbf{e}_2 = \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} \\ \mathbf{u}_{k+1} &= \mathbf{a}_{k+1} - (\mathbf{a}_{k+1} \cdot \mathbf{e}_1)\mathbf{e}_1 - \dots - (\mathbf{a}_{k+1} \cdot \mathbf{e}_k)\mathbf{e}_k, \ \mathbf{e}_{k+1} = \frac{\mathbf{u}_{k+1}}{\|\mathbf{u}_{k+1}\|} \end{aligned}$$

Gram-Schimdt Orthogonalization

Consider a matrix A

$$\mathbf{A}=[\mathbf{a}_1|\mathbf{a}_2|\cdots|\mathbf{a}_n]$$

Then,

$$\begin{split} \mathbf{u}_1 &= \mathbf{a}_1, \ \mathbf{e}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} \\ \mathbf{u}_2 &= \mathbf{a}_2 - (\mathbf{a}_2 \cdot \mathbf{e}_1)\mathbf{e}_1, \ \mathbf{e}_2 = \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} \\ \mathbf{u}_{k+1} &= \mathbf{a}_{k+1} - (\mathbf{a}_{k+1} \cdot \mathbf{e}_1)\mathbf{e}_1 - \dots - (\mathbf{a}_{k+1} \cdot \mathbf{e}_k)\mathbf{e}_k, \ \mathbf{e}_{k+1} = \frac{\mathbf{u}_{k+1}}{\|\mathbf{u}_{k+1}\|} \end{split}$$

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{a}_1 | \boldsymbol{a}_2 | \cdots | \boldsymbol{a}_n \end{bmatrix}_{N \times n} = \begin{bmatrix} \boldsymbol{e}_1 | \boldsymbol{e}_2 | \cdots | \boldsymbol{e}_n \end{bmatrix}_{N \times n} \begin{bmatrix} \boldsymbol{a}_1 \cdot \boldsymbol{e}_1 & \boldsymbol{a}_2 \cdot \boldsymbol{e}_1 \cdots \boldsymbol{a}_n \cdot \boldsymbol{e}_1 \\ 0 & \boldsymbol{a}_2 \cdot \boldsymbol{e}_2 \cdots \boldsymbol{a}_n \cdot \boldsymbol{e}_2 \\ \vdots \vdots \ddots \vdots & & & \\ 0 & 0 \cdots \boldsymbol{a}_n \cdot \boldsymbol{e}_n \end{bmatrix}_{n \times n}$$

Moore-Penrose Pseudo Inverse

Least Squares Solution for Overdetermined System

$$\hat{x} = \arg\min_{x} \|Ax - b\|_2$$

where $A \in \mathbb{C}^{N \times n}$ is a tall matrix i.e. N > n and $b \in \mathbb{C}^N$ is not in the column space of A.

Moore-Penrose Pseudo Inverse

Least Squares Solution for Overdetermined System

$$\hat{x} = \arg\min_{x} \|Ax - b\|_2$$

where $A \in \mathbb{C}^{N \times n}$ is a tall matrix i.e. N > n and $b \in \mathbb{C}^N$ is not in the column space of A.

Standard Approach: QR-decomposition A = QR

$$\hat{x} = (A^T A)^{-1} A^T b = (R^T Q^T Q R)^{-1} A^T b = (R^T R)^{-1} A^T b$$

where $R \in \mathbb{C}^{n \times n}$ is upper triangular matrix and multiplying it and inverting the result is fast.

RFD matrix as Subspace Embedding

Theorem-1: Low dimensional Subspace embedding

$$(1 - \epsilon) \|x\|_2^2 \le \|\Phi x\|_2^2 \le (1 + \epsilon) \|x\|_2^2 \ \forall x \in \mathcal{L}_{\mathcal{B}}^r$$

if $\Phi \in \mathbb{C}^{m \times n}$ is an $\epsilon/2$ -JL map of C into \mathbb{C}^m and $C \subset S^r_{\mathcal{B}}$ is a minimal $\epsilon/16$ -cover of the compact set $S^r_{\mathcal{B}} \subset \mathcal{L}^r_{\mathcal{B}}$.

Compressing Overdetermined System of Equations

$$(1 - \epsilon) ||Ay - b||_2^2 \le ||\Phi(Ay - b)||_2^2 \le (1 + \epsilon) ||Ay - b||_2^2$$

where $Ay - b \in \mathcal{L}_{\mathcal{B}}^{n+1}$ and $\mathcal{B} = \{a_1, \dots, a_n, b\}$ be the n+1 orthonormalized columns of A and b.

 Φ can be an $\tilde{F}=\sqrt{N/m}\,RFD$ matrix where R is random row selection matrix, F is the DFT matrix and D is diagonal matrix with Radamacher variables.

Error Consideration of RFD-Compression

Fast JL embedding matrix *RFD* satisfies

$$(1-\epsilon)\|Ay-b\|_2^2 \le \|\tilde{F}(Ay-b)\|_2^2 \le (1+\epsilon)\|Ay-b\|_2^2$$

where

- $\tilde{F} = \sqrt{N/m} \, RFD \in \mathbb{C}^{m \times N}$ is the fast JL embedding matrix.
- $m = c_1(n+1) \ln{(c_2/\epsilon)} \ln^4{N}$ is the number of rows of JL matrix \tilde{F} .
- N and n are the number of rows and columns of matrix A

Solution to the compressed least squares y'_{min} satisfies:

$$\sqrt{\frac{1-\epsilon}{1+\epsilon}} \|Ay_{min} - b\|_2 \le \|Ay'_{min} - b\|_2 \le \sqrt{\frac{1+\epsilon}{1-\epsilon}} \|Ay_{min} - b\|_2$$

where $y'_{min} = \underset{z \in \mathbb{C}^n}{\min} \|\tilde{F}Az - \tilde{F}b\|_2$ is the solution to the compressed least squares.

Time consideration of RFD-Compression

Time complexity of operations in RFD compression:

- $RFD \times A \longrightarrow \mathbb{O}(nNlog(N))$
- $RFD \times b \longrightarrow \mathbb{O}(Nlog(N))$
- $\underset{z}{\operatorname{arg\,min}} \|RFD\,Az RFD\,b\|_2 \longrightarrow \mathbb{O}(mn^2) = \mathbb{O}(n^3log^4(N))$

Comparisons of Time complexity for solving Least Squares Problem:

- Uncompressed QR-based least squares: $\mathbb{O}(n^2N)$
- RFD compression based least squares: $\mathbb{O}(n^3 \log^4(N) + nN \log(N))$
- For time advantage, validity range of n: $log(N) \le n \le N log^{-4}(N)$

Parameters Chosen

Parameters

- $A = [a_{i,j}]_{i \in [N], j \in [n]}$, $b = [b_j]_{j \in [n]}$ where $[a_{i,j}] \sim U(0,1)$, $[b_j] \sim U(0,1)$.
- To reduce the randomness, 25 trails were taken per iteration.
- CPU: Intel(R) Core(TM) *i*9 9900*K* CPU @ 3.60 GHz, 64 GB RAM.
- *n* is almost in the range $[\lceil \log(N) \rceil \eta, \lceil N \log^{-4}(N) \rceil + \eta], \eta \in I$.

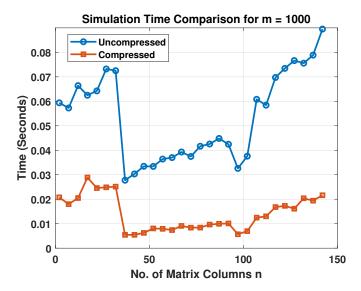
Parameters Chosen

Parameters

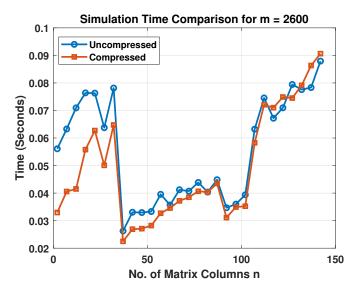
- $A = [a_{i,j}]_{i \in [N], j \in [n]}$, $b = [b_j]_{j \in [n]}$ where $[a_{i,j}] \sim U(0,1)$, $[b_j] \sim U(0,1)$.
- To reduce the randomness, 25 trails were taken per iteration.
- CPU: Intel(R) Core(TM) i9 9900K CPU @ 3.60 GHz, 64 GB RAM.
- *n* is almost in the range $[\lceil \log(N) \rceil \eta, \lceil N \log^{-4}(N) \rceil + \eta]$, $\eta \in I$.

No. of rows N	Compression Factor m	No. of columns <i>n</i>
1000	400 : 100 : 1000	2 : 5 : 72
3000	1000 : 200 : 3000	2 : 5 : 72
5000	2000 : 500 : 5000	2:5:142

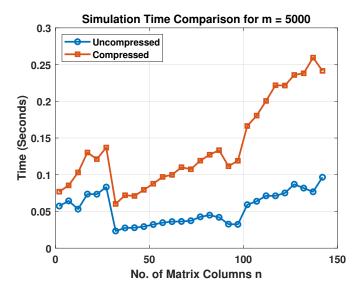
Clear Time advantage for N = 5000 and m = 1000



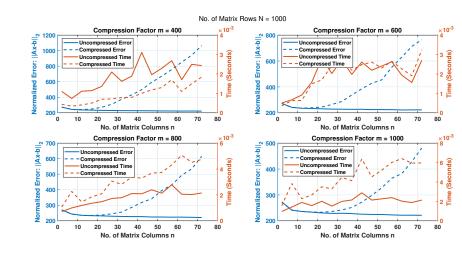
Comparable times for N = 5000 and m = 2600



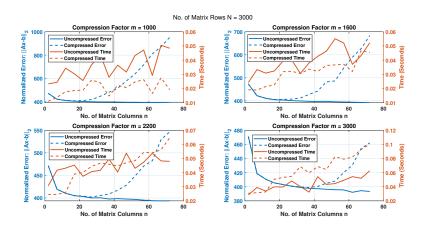
Time disadvantage for N = 5000 and m = 5000



Error vs Simulation Time for N=1000



Error vs Simulation Time for N=3000



- Trade-off involved between inversion error and simulation time.
- Compressed error always more significant than the uncompressed error.
- Only for low values of m, significant time advantage gained

Selecting range of m and n from time simulations

Upper bound on *m*

- Time advantage by compression for $m \leq \hat{m}_{ub}$.
- For $m \ge \hat{m}_{ub}$, we will get a disadvantage in time.
- From Observations for N = 5000, $\hat{m}_{ub} = 2600$:

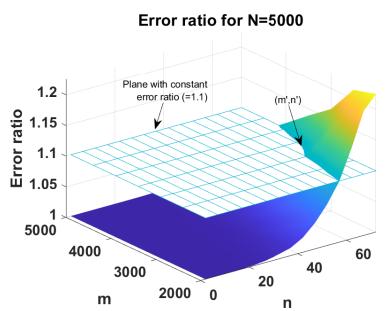
$$mn^2 + nNlogN \le n^2N$$

Lower bound on *n*

 $\forall m \leq \hat{m}_{ub} \exists n \geq \hat{n}_{lb}(m)$, where $\hat{n}_{lb}(m)$ is the optimum lower bound on n for a given m. Then the maximum lower bound on n will be $\hat{n}_{lb}(\hat{m}_{ub})$: $\hat{n}_{lb} = 10$

$$n \geq \frac{N \log(N)}{N - m}$$

Error Ratio for N = 5000



Selecting range of m and n from error simulations

Allowable error threshold

If the error for the compressed least squares lies within 5% of the original least squares error, then

$$||Ay'_{min} - b||_2 \le 1.1 ||Ay_{min} - b||_2 \implies \sqrt{\frac{1+\epsilon}{1-\epsilon}} = 1.1 \implies \epsilon = 0.095$$

Bounds on n and m

- ullet Error ratio decreases with $m \implies$ Lower bound on m: $m \ge \hat{m}_{lb}$
- Error ratio increases with $n \implies \text{Upper bound on } n$: $n \le \hat{n}_{ub}$

Getting a final bound on n and m

Combining bounds from error and time consideration

- If $\hat{m}_{lb} \leq \hat{m}_{ub}$, a feasible bound for m is $\hat{m}_{lb} \leq m \leq \hat{m}_{ub}$
- If $\hat{n}_{lb} \leq \hat{n}_{ub}$, a feasible bound for m is $\hat{n}_{lb} \leq n \leq \hat{n}_{ub}$

Trade-off between error and time

- Keeping $(\hat{m}_{ub}, \hat{n}_{lb})$ fixed, we want $(\hat{n}_{ub} \hat{n}_{lb})$ and $(\hat{m}_{ub} \hat{m}_{lb})$ to increase.
- $\hat{m}_{lb} \downarrow$, $\hat{n}_{ub} \uparrow$, error ratio \uparrow .
- $\hat{n}_{lb} = 7$, $\hat{n}_{ub} = 45$, $\hat{m}_{ub} = 2600$, $\hat{m}_{lb} = 2000$.
- Will get more time-advantage over a large range of m and n, if allowable error ratio increases.

Conclusion

- QR decomposition used in finding least squares solution to overdetermined system of equations.
- Compressed the overdetermined system of equations using RFD matrices.
- Compared the matrix inversion error and time for uncompressed with that of compressed system (RFD).
- Got the lower and upper bounds for compression factor m and the number of columns n for a given number of rows N.
- Trade-off between allowable error and time advantage shown over a range of m and n.

Fin. Questions?