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Introduction

@ QR factorization of matrix A to get faster inversion

e Finding least squares solution (pseudo-inverse) to overdetermined
system of equations

e Compress a matrix A € CVN*" using fast JL map to get Ac € C™*"
with m < N and n < N.

@ Find the best values of m and n for a given N for a good error-time
trade-off
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Gram-Schimdt Orthogonalization

Consider a matrix A

A = [a1]ay| - - - |a,]
Then,
ug
up =a, € = 57—
[Ju |
up
u = az — (az : 91)917 ey = m
Ugkt+1
Ukr1 = aky1 — (Akr1-€1)er — - — (Aks1 - €x)ek, €xry = T
([Tpsy|
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Gram-Schimdt Orthogonalization

Consider a matrix A

A = [a1’a2| cee ’an]
Then,
u;
up —a;, € = ——
[Juy]]
u?
uy =az — (az-er)er, ez = Jluz]l
Uii1
Ukl = Akl — (Akrr-e1)er — - — (Akp1 - ek)ek, exy1 = HUkJrlH
+
a;-e; ar-e;---ap-e;
A= [al\az\ e ‘an] Nxn = [31’92‘ e ‘e”]NXn

0 0---a,-e, e

Avrajit Ghosh, Siddhant Gautam (MSU) Approximate Least Squares December 9, 2020 4/



Moore-Penrose Pseudo Inverse

Least Squares Solution for Overdetermined System

X = arg min ||[Ax — b||2
X

where A € CN*" is a tall matrix i.e. N > nand b € CN is not in the
column space of A.
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Moore-Penrose Pseudo Inverse

Least Squares Solution for Overdetermined System

X = arg min ||[Ax — b||2
X

where A € CN*" is a tall matrix i.e. N > nand b € CN is not in the
column space of A.

Standard Approach: QR-decomposition A = QR

£ = (ATA)—IATb _ (RTQTQR)—lATb: (RTR)—IATb

where R € C"*" is upper triangular matrix and multiplying it and inverting
the result is fast.
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RFD matrix as Subspace Embedding

Theorem-1: Low dimensional Subspace embedding J

(1= )llx]z < llox]z < (1 +e)lIx[7 ¥x € L5

if ® € C™*"is an €/2-JL map of C into C™ and C C Sj is a minimal
€/16-cover of the compact set Sj; C L.

Compressing Overdetermined System of Equations
(1 - o)Ay — b3 < [[®(Ay = b)[13 < (1 +€)[|Ay — b]3 J

where Ay — b € E?gﬂ and B ={a1, -, an, b} be the n+ 1 ortho
normalized columns of A and b.

® can be an F = \/N/m RFD matrix where R is random row selection
matrix, F is the DFT matrix and D is diagonal matrix with Radamacher
variables.
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Error Consideration of RFD-Compression

Fast JL embedding matrix RFD satisfies
(1 - 9)llAy — bl < |[F(Ay = b)I3 < (L + €)[| Ay — bII3 J

where

= /N/mRFD € C™N is the fast JL embedding matrix.
o m=ci(n+1)In(c/e)In* N is the number of rows of JL matrix F.

@ N and n are the number of rows and columns of matrix A

Solution to the compressed least squares y;,. satisfies:

1-— 1+e€
1+e ”AYmm - bHQ < HAYmm bH2 <

“Aymm bH2

where y/ . = argmin||[FAz — Fb]|5 is the solution to the compressed least

zeCn
squares.
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Time consideration of RFD-Compression

Time complexity of operations in RFD compression:
e RFD x A — O(nNlog(N))
@ RFD x b — O(Nlog(N))
e argmin||RFD Az — RFD b||; — O(mn?) = O(n®log*(N))

Comparisons of Time complexity for solving Least Squares Problem:
@ Uncompressed QR-based least squares: Q(n?N)
@ RFD compression based least squares: Q(n®log*(N) + nN log(N))
e For time advantage, validity range of n: log(N) < n < Nlog=*(N)
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Parameters Chosen

Parameters
o A= [aijliein et b = [bljerm where [a;;] ~ U(0,1), [b] ~ U(0,1).
@ To reduce the randomness, 25 trails were taken per iteration.
e CPU: Intel(R) Core(TM) i9 — 9900K CPU ©3.60 GHz, 64 GB RAM.
@ nis almost in the range [[log(N)] — n, [Nlog=*(N)] +n], n € I.
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Parameters Chosen

Parameters
o A= [aijliein et b = [bljerm where [a;;] ~ U(0,1), [b] ~ U(0,1).
@ To reduce the randomness, 25 trails were taken per iteration.
e CPU: Intel(R) Core(TM) i9 — 9900K CPU ©3.60 GHz, 64 GB RAM.
@ nis almost in the range [[log(N)] — n, [Nlog=*(N)] +n], n € I.

No. of rows N | Compression Factor m | No. of columns n
1000 400 : 100 : 1000 2:5:72
3000 1000 : 200 : 3000 2:5:72
5000 2000 : 500 : 5000 2:5:142
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Clear Time advantage for N = 5000 and m = 1000

Simulation Time Comparison for m = 1000
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Comparable times for N =
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Time disadvantage for N = 5000 and m = 5000

0.3 Simulation Time Comparison for m = 5000
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Error vs Simulation Time for N=1000
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Error vs Simulation Time for N=3000
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@ Trade-off involved between inversion error and simulation time.

@ Compressed error always more significant than the uncompressed
error.

@ Only for low values of m, significant time advantage gained
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Selecting range of m and n from time simulations

Upper bound on m
@ Time advantage by compression for m < .
e For m > my,, we will get a disadvantage in time.
@ From Observations for N = 5000, rm,, = 2600:

mn® + nNlogN < n>N

Lower bound on n

Vm < myup3 n > fAp(m), where fijp(m) is the optimum lower bound on n
for a given m. Then the maximum lower bound on n will be A (ri1,p):
Ap =10

n>N|og(N)
- N—m
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Error Ratio for N = 5000

Error ratio for N=5000

Plane with constant

1.2 error ratio (=1.1) (m',n"})
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Selecting range of m and n from error simulations

Allowable error threshold

If the error for the compressed least squares lies within 5% of the original
least squares error, then

1+e€
|AYpin — bll2 < 1.1||Aymin — b2 = T, =11 = =000

Bounds on n and m

@ Error ratio decreases with m — Lower bound on m: m > my,

@ Error ratio increases with n = Upper bound on n: n < ayy
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Getting a final bound on n and m

Combining bounds from error and time consideration
o If my, < myp, a feasible bound for m is My < m < My

o If Ay < Ayp, a feasible bound for mis Ay < n < Ay

Trade-off between error and time
o Keeping (Myp, fip) fixed, we want (A, — Ap) and (M, — Myp) to
increase.
@ my |, ,Ayp T, error ratio 1.
@ fAp =7, Ny, =45, My, = 2600, My, = 2000.
o Will get more time-advantage over a large range of m and n, if
allowable error ratio increases. )
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Conclusion

QR decomposition used in finding least squares solution to
overdetermined system of equations.

@ Compressed the overdetermined system of equations using RFD
matrices.

@ Compared the matrix inversion error and time for uncompressed with
that of compressed system (RFD).

o Got the lower and upper bounds for compression factor m and the
number of columns n for a given number of rows N.

@ Trade-off between allowable error and time advantage shown over a
range of m and n.
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Fin.

Questions?
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