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Introduction

Main goal: Using a Convolutional Neural Network based algorithm for
solving ill-posed MRI reconstruction problem

In an inverse problem, the measurement Y can be written as

Y = Ax + η

where x is the image, A denotes the forward operator and η is the
noise.

Inverse Reconstruction problem:

x̂ = arg min
x
‖Ax − y‖22 + R(x)

where R(x) is a regularizer that assumes a prior on x .

If R(x) = 0, the solution is given by x̂ = A†y which minimises the
l2-norm of the difference without assuming any prior on x .
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Forward operator A

The forward or sensing operator A for different cases is given by:

A = I and R(x) = ||x ||1 for image denoising.

A is subsampled Fourier transform, R(x) = ||x ||Tv for MRI
reconstruction problem.

A is filtering for deblurring.

The direct inverse solution of the MRI reconstruction is

f = H†Wg

where g = Hf and g denotes the measurement, H is the Fourier transform
matrix, and W is the inverse sparsifying transform.
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Iterative Inversion

Inverse Reconstruction Problem

â = arg min
a
||y − HWa||22 + λ||a||1

where H is the forward model (FT), y is the measured k-space data, a is
transform coefficient vector and W is the sparsifying transform.
Desired reconstruction: x̂ = Wâ

Iterative Shrinkage Thresholding Algorithm (ISTA)

ak+1 = Sλ
L

(
1

L
W ∗H∗y + (I − 1

L
W ∗H∗HW )ak)

where Sλ
L

is the soft-thresholding operator2 and W ∗,H∗ are adjoint

operators of W and H respectively.

2I. Daubechies et. al., “An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint,” Commun. Pure Appl. Math., vol. 57, 2004.
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Why use a CNN?

Figure: Iterative Unrolling of optimization problem modelled as a CNN3

3K. H. Jin, M. T. McCann, E. Froustey and M. Unser, ”Deep Convolutional Neural
Network for Inverse Problems in Imaging,” in IEEE Transactions on Image Processing,
vol. 26, Sept. 2017
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Structure of U-Net4

4K. H. Jin et. al., ”Deep Convolutional Neural Network for Inverse Problems in
Imaging,” in IEEE Transactions on Image Processing, vol. 26, Sept. 2017
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Parts of U-Net

Components of U-Net:

1 Double Convolution: 2× (Convolution + Batch-Normalization +
ReLU)

2 Downscaling: Maxpooling by factor 2

3 Upscaling: Upsampling with bilinear interpolation

4 Skip connection: The input image is added to the output of the
network. So that the network now learns the difference between the
true and the aliased image.

5 Concatenation: At each subsampled layer, the output of
downsample+Conv2d is concatenated to the upsampled image.

Advantage of U-Net architecture

Multilevel decomposition: Extracts features from each scale

Multichannel filtering: Extracts multiple feature maps from each
scale
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Implementation Details - CNN

Masks Used:

1 Low Frequency (LF) - Vertical

2 Variable Density Random Sampling (VDRS)

Parameter Value
Learning Rate 5× 10−3

Epochs 40

Batch-size 25

Training/Validation Ratio 645/50

Training/Testing Ratio 645/5

CNN Architecture U-Net5

5Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. ”U-net: Convolutional
networks for biomedical image segmentation.” In International Conference on Medical
image computing and computer-assisted intervention, pp. 234-241. Springer, Cham,
2015.
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Implementation Details - Training Data Generation

Parameter Value
Data OCMR6

Size of Image 512× 208

No. of Total Samples 700

Undersampling Factors 8x, 16x, 24x

No. of Coils 18

Sensitivity Maps ESPIRiT7

Decoder CS-Sigpy8

6Chen, Chong, et al. ”OCMR (v1. 0)–Open-Access Multi-Coil k-Space Dataset for
Cardiovascular Magnetic Resonance Imaging.” arXiv e-prints (2020): arXiv-2008.

7Uecker, Martin, et.al. ”ESPIRiT—An Eigenvalue Approach to Autocalibrating
Parallel MRI: where SENSE meets GRAPPA.” Magnetic Resonance in Medicine (2014).

8Ong F, Lustig M. SigPy: A Python Package for High Performance Iterative
Reconstruction. ISMRM Proceedings 27th Annual Meeting, Montreal, May 2019
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Training Data
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Reconstruction Results: Low Frequency @ 8x
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Reconstruction Results: Random Sampling @ 8x
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Reconstruction Results: Low Frequency @ 16x
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Reconstruction Results: Random Sampling @ 16x
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Reconstruction Results: Low Frequency @ 24x
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Reconstruction Results: Random Sampling @ 24x
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Reconstruction Accuracy: PSNR

Mask Selected Image
Undersampling Factor

8x 16x 24x

Low Frequency (Vertical)
Aliased 39.72 35.04 28.20

Reconstructed 29.56 30.54 26.74

Random Sampling
Aliased 24.29 25.18 24.92

Reconstructed 24.85 29.14 27.30

Table: PSNR (dB) of the aliased and reconstructed image from the U-Net for
different cases

Better accuracy than the aliased image in case of variable density
sampling

No improvement in accuracy for 8x undersampling factor

Significant improvement for highly undersampled MRI (16x, 24x)
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Conclusion

Presented a CNN based MRI-reconstruction with U-Net.

U-Net extracts features of image at multiple scales. Hence it is ideal
for MRI reconstruction.

For the undersampled MRI dataset, U-Net can extract the fine detail
in the image.

For highly undersampled MRI with reduced time scan, better
reconstruction with U-Net.
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