Convolutional Neural Network for MRI Reconstruction Problem¹

Avrajit Ghosh, Siddhant Gautam, Shijun Liang

Computational Mathematics, Science and Engineering,
Michigan State University

December 9, 2020

¹Jin, K.H., McCann, M.T., Froustey, E. and Unser, M., 2017. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE Transactions on Image Processing, 26(9), pp.4509-4522.

Table of Contents

- Background
- 2 Motivation for the problem
- Models
- 4 Results
- Conclusion

Introduction

Main goal: Using a *Convolutional Neural Network* based algorithm for solving ill-posed MRI reconstruction problem

In an inverse problem, the measurement Y can be written as

$$Y = Ax + \eta$$

where x is the image, A denotes the forward operator and η is the noise.

• Inverse Reconstruction problem:

$$\hat{x} = \arg\min_{x} \|Ax - y\|_2^2 + R(x)$$

where R(x) is a regularizer that assumes a prior on x.

• If R(x) = 0, the solution is given by $\hat{x} = A^{\dagger}y$ which minimises the /2-norm of the difference without assuming any prior on x.

Forward operator A

The forward or sensing operator A for different cases is given by:

- A = I and $R(x) = ||x||_1$ for image denoising.
- A is subsampled Fourier transform, $R(x) = ||x||_{T_v}$ for MRI reconstruction problem.
- *A* is filtering for deblurring.

The direct inverse solution of the MRI reconstruction is

$$f = H^{\dagger} W g$$

where g = Hf and g denotes the measurement, H is the Fourier transform matrix, and W is the inverse sparsifying transform.

Iterative Inversion

Inverse Reconstruction Problem

$$\hat{a} = \underset{a}{\operatorname{arg \, min}} ||y - HWa||_{2}^{2} + \lambda ||a||_{1}$$

where H is the forward model (FT), y is the measured k-space data, a is transform coefficient vector and W is the sparsifying transform.

Desired reconstruction: $\hat{x} = W\hat{a}$

Iterative Shrinkage Thresholding Algorithm (ISTA)

$$a^{k+1} = S_{\frac{\lambda}{L}}(\frac{1}{L}W^*H^*y + (I - \frac{1}{L}W^*H^*HW)a^k)$$

where $S_{\frac{\lambda}{L}}$ is the soft-thresholding operator² and W^*, H^* are adjoint operators of W and H respectively.

Why use a CNN?

Figure: Iterative Unrolling of optimization problem modelled as a CNN³

³K. H. Jin, M. T. McCann, E. Froustey and M. Unser, "Deep Convolutional Neural Network for Inverse Problems in Imaging," in IEEE Transactions on Image Processing, vol. 26, Sept. 2017

Structure of U-Net⁴

⁴K. H. Jin et. al., "Deep Convolutional Neural Network for Inverse Problems in Imaging," in IEEE Transactions on Image Processing, vol. 26, Sept. 2017

Parts of U-Net

Components of U-Net:

- $\textbf{ Double Convolution: } 2 \times (\mathsf{Convolution} + \mathsf{Batch}\text{-}\mathsf{Normalization} + \mathsf{ReLU})$
- **2 Downscaling:** Maxpooling by factor 2
- Upscaling: Upsampling with bilinear interpolation
- Skip connection: The input image is added to the output of the network. So that the network now learns the difference between the true and the aliased image.
- Concatenation: At each subsampled layer, the output of downsample+Conv2d is concatenated to the upsampled image.

Advantage of U-Net architecture

- Multilevel decomposition: Extracts features from each scale
- Multichannel filtering: Extracts multiple feature maps from each scale

Implementation Details - CNN

Masks Used:

- Low Frequency (LF) Vertical
- Variable Density Random Sampling (VDRS)

Parameter	Value		
Learning Rate	5×10^{-3}		
Epochs	40		
Batch-size	25		
Training/Validation Ratio	645/50		
Training/Testing Ratio	645/5		
CNN Architecture	U-Net ⁵		

⁵Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." In International Conference on Medical image computing and computer-assisted intervention, pp. 234-241. Springer, Cham, 2015.

Implementation Details - Training Data Generation

Parameter	Value	
Data	OCMR ⁶	
Size of Image	512 × 208	
No. of Total Samples	700	
Undersampling Factors	8x, 16x, 24x	
No. of Coils	18	
Sensitivity Maps	ESPIRiT ⁷	
Decoder	CS-Sigpy ⁸	

 $^{^6}$ Chen, Chong, et al. "OCMR (v1. 0)–Open-Access Multi-Coil k-Space Dataset for Cardiovascular Magnetic Resonance Imaging." arXiv e-prints (2020): arXiv-2008.

⁷Uecker, Martin, et.al. "ESPIRiT—An Eigenvalue Approach to Autocalibrating Parallel MRI: where SENSE meets GRAPPA." Magnetic Resonance in Medicine (2014).

⁸Ong F, Lustig M. SigPy: A Python Package for High Performance Iterative Reconstruction. ISMRM Proceedings 27th Annual Meeting, Montreal, May 2019

Training Data

Reconstruction Results: Low Frequency @ 8x

Reconstruction Results: Random Sampling @ 8x

Reconstruction Results: Low Frequency @ 16x

Reconstruction Results: Random Sampling @ 16x

Reconstruction Results: Low Frequency @ 24x

Reconstruction Results: Random Sampling @ 24x

Reconstruction Accuracy: PSNR

Mask Selected	Image	Undersampling Factor		
		8x	16x	24x
Low Frequency (Vertical)	Aliased	39.72	35.04	28.20
	Reconstructed	29.56	30.54	26.74
Random Sampling	Aliased	24.29	25.18	24.92
	Reconstructed	24.85	29.14	27.30

Table: PSNR (dB) of the aliased and reconstructed image from the U-Net for different cases

Reconstruction Accuracy: PSNR

Mask Selected	Image	Undersampling Factor		
		8x	16x	24x
Low Frequency (Vertical)	Aliased	39.72	35.04	28.20
	Reconstructed	29.56	30.54	26.74
Random Sampling	Aliased	24.29	25.18	24.92
	Reconstructed	24.85	29.14	27.30

Table: PSNR (dB) of the aliased and reconstructed image from the U-Net for different cases

- Better accuracy than the aliased image in case of variable density sampling
- No improvement in accuracy for 8x undersampling factor
- Significant improvement for highly undersampled MRI (16x, 24x)

Conclusion

- Presented a CNN based MRI-reconstruction with U-Net.
- U-Net extracts features of image at multiple scales. Hence it is ideal for MRI reconstruction.
- For the undersampled MRI dataset, U-Net can extract the fine detail in the image.
- For highly undersampled MRI with reduced time scan, better reconstruction with U-Net.

Fin. Questions?